The Shape of Things to Come: Evo Devo Perspectives on Causes and Consequences in Evolution

4

The Shape of Things to Come: Evo Devo Perspectives on Causes and Consequences in Evolution

Armin P. Moczek

Introduction

When I was a young and innocent postdoctoral researcher hunting for the elusive tenure track position, I would begin my seminars by briefly highlighting the major contributions made by alternative frameworks in conceptualizing what matters in directing evolution. Showing a slide of Darwin's finches, I would emphasize the role of adaptive evolution and the view of organisms as Swiss army knives—accumulations of gadgets, each with a specific function honed over time. Showing a drawing of a prehistoric small mammal gnawing on a dinosaur carcass, I would highlight the role of chance and accidents in the diversification of life on earth. And lastly I would show a drawing of a bird embryo squeezed to its limits within an egg and emphasize the role of developmental constraints in determining where and where not evolution may be allowed to go. I would close this introduction with three major conclusions: First, all three of these perspectives have been incredibly illuminating. Second, they are not mutually exclusive. Third, they are all roughly equally useless when it comes to understanding the origins of novelty in evolution because selection cannot select for traits that do not yet exist, accidents can only sort among preexisting variation, and constraints only limit options, but by themselves do not create new ones (Moczek 2008). Instead I would posit that how the origin of novelty can

create new ones (Moczek 2008). Instead I would posit that how the origin of novelty can be integrated within a framework of descent with modification, how novel complex traits may originate from within the confines of ancestral variation, the baby steps of innovation needed to eventually yield the first limb, wing, eye, feather, photic organ, and so on all remain remarkably poorly understood in spite of over 150 years of vibrant evolutionary biology since the publication of the *Origin of Species* (Darwin 1859). And then I would say that my research program addresses these shortcomings by integrating the role of development into our understanding of speed and direction in organismal evolution, in particular in the origins of novelty, and that I will finally resolve this long-standing, foundational challenge to evolutionary biology. And that you really should strongly consider hiring me.

64 Armin P. Moczek

About 15 years have passed since and it is appropriate that I look back and assess where we stand—the larger field of evolutionary developmental biology (evo devo) in general, and my own research program as one of its many representatives—with respect to our abilities to contribute meaningfully to our current understanding of the evolutionary process, in particular with respect to challenges for which previous approaches and schools of thought have struggled to find resolution, such as innovation and the origins of novelty. Specifically, in this chapter I will begin by reviewing a few key terms and concepts, and the creative tensions between them, that will be critical for subsequent discussions. Secondly, drawing from the work of others as well as my own, I will then highlight examples that illustrate how, on what levels of biological organization, and on what level of causation, an understanding of how organisms build themselves enriches our understanding of how and why they evolve the way they do. Lastly, I will discuss some of the challenges that remain, and in particular conceptual challenges evo devo is now itself encountering, and opportunities for their resolution. Let us set the stage, however, with a brief discussion of some of the conceptual constellations that led to the birth of evo devo as a discipline, and which motivate many of its practitioners, including myself.

What Can an Evolutionary Biologist Possibly Learn from Studying Development?

This was the question I would hear during every single meeting I had with my dissertation committee while in graduate school. It was always posed by the same faculty member who shall remain unnamed, a highly accomplished evolutionary biologist and population geneticist, who to this day I respect very much, and who posed his question not to tease me: instead, he truly did not understand why anyone interested in understanding evolution's paths would bother learning about how development works. In this of course he was and is not alone—it is a mindset that scientists like myself encounter to this day. *Evo devo*'s contributions to our understanding of the evolutionary process are often either considered modest at best, or alternatively, thought of as not really evolutionary in nature. So how did we get to this point?

Evolutionary biology as a discipline first emerged in the first half of the twentieth century by integrating natural selection and Mendelian inheritance into the then-coalescing framework of population genetics (Mayr 1982). In the decades that followed, evolutionary biology continued to expand and mature into a highly sophisticated and successful framework able to address a broad range of biological phenomena. In the process, several key concepts and dichotomies became deeply engrained in how we conceptualize organismal evolution in research and how it is taught in our courses: most importantly, we grew to understand phenotypes as rooted in genes and genomes, and as long as phenotypic variation could be associated with genetic variation in some way, this enabled the opportunity to conceptualize, and thereby equate, *phenotypic* evolution as a change in the *genotypic* composition of a population over time (Laland et al. 2015). Doing so removed the need

to understand exactly how genotypic information and variation manifested in phenotypes and phenotypic variation. As a by-product, this then removed any need to understand how organisms are built during development from understanding how they evolve over time. The resulting quantitative framework enabled important advances in our understanding of the nature of diverse evolutionary phenomena, though a subset of challenges stubbornly resisted resolution, including as already noted the questions surrounding the origins of novel complex traits and the corresponding major transitions and radiations they enabled. Given their entrenchment in deep time, and the lack of phenotypic variation accessible to quantitative and population-genetic approaches, standard evolutionary biology struggled to generate satisfactory answers and had stopped trying by the time I had entered graduate school. The resulting disconnect between what I considered to be among the most important questions in evolution, and the tools I was being taught in my upper-level graduate evolution classes, caused me to look elsewhere, and the then rapidly transforming field of *evo devo* very quickly revealed to me novel ways to both conceptualize, and empirically interrogate, the nature of innovation in evolution.

What Is an Evolutionary Novelty?

Prior to the advent of evo devo, Ernst Mayr (1960) defined novelty as "any newly acquired structure or property that permits the assumption of a new function," which parallels corresponding statements as far back as Lamarck and Darwin, holds intuitive appeal, yet runs into trouble when we try to use it to derive hypotheses regarding how novelties might originate: selection can only act on traits that already exist, but if they already exist in some shape or form they are no longer exactly novel. Something else is needed to account for the initiation of novelty independent of future functionality. A second definition was proposed by Müller (1990), who defined novelty as "a qualitatively new structure with a discontinuous origin, marking a relatively abrupt deviation from the ancestral condition."

This definition remained neutral regarding functionality, but left it up for interpretation where quantitative variation ends and qualitative distinctness begins. How different is novel? This is where a third definition, proposed by Müller and Wagner (1991), stepped in to provide what seemed like an iron-clad cutoff: "A morphological novelty is a structure that is neither homologous to any structure in the ancestral species or homonomous to any other structure in the same organism." Now novelty began where homology ended. But where does homology end? Traditionally, and as taught in the introductory zoology classes I took in Germany in the early 1990s before moving to the United States, classic homology criteria included relative position, intermediate forms, and the all-encompassing special qualities, and they neatly dichotomize traits into those that are homologous and those that are not (Remane 1952). Evo devo very swiftly forced a revision of this framework into a far more complex, nuanced, and layered understanding of homology, for two major reasons. First, it forever rejected the notion that the extraordinary phenotypic diversity that exists on the level of organisms must somehow be paralleled by a corresponding diversity

66 Armin P. Moczek

in genetic and developmental mechanisms. Instead, researchers now recognize that the developmental genetic underpinnings of phenotypic diversity are remarkably conserved, and that highly divergent organisms rely on much of the same developmental mechanisms to instruct the building of very different, and by conventional criteria clearly non-homologous, organs and structures (reviewed in, for example, Shubin, Tabin, and Carroll 2009; Held 2017; and see below for concrete examples). And we had to recognize the existence of the *opposite* constellation as well: traits that by conventional criteria are clearly and unambiguously homologous may form during development in surprisingly different, *non-homologous* ways, a phenomenon we now recognize as developmental systems drift or phenogenetic drift (Weiss and Fullerton 2000; True and Haag 2001). *Evo devo* thus forced a transformation of our understanding of homology away from a neat and discrete black and white to layered set of shades of gray (Wagner 2014). At the same time, as we will see next, it brought us significantly closer to understanding the origins of novelty in ways no previous discipline had been able to achieve.

Novelty and Diversity from the Confines of Ancestral Variation

(a) Cooption, Parallelism, and the Modular Nature of Development

By discovering the remarkable conservation of developmental building blocks and processes that characterizes phenotypic diversity, evo devo forced a view of organismal diversity akin to that of Lego creations: rather than being shaped primarily or solely by adaptive responses to selection pressures, diverse organisms emerged as the modified reassemblages of the same and seemingly very limited pool of genes, developmental pathways, and morphogenetic processes. Clearly, natural selection remained a leading force in the creation of organism-environment fit, but one that suddenly had to draw from a heavily restricted pool of resources from which to generate diversity. No surprise that many embraced the new evo devo findings pouring in during the 1990s as a reflection of overwhelming evidence for developmental constraint on what evolution might otherwise be able to accomplish. If diversification seemed heavily constrained, then how anything novel could ever emerge in the process was anyone's guess. While I sense that many evolutionary biologists looking in on the discipline of evo devo have retained the perspective to this day that the best understanding development can do for an evolutionary biologist is to understand the limits it imposes on diversification, evo devo itself managed to move on, in large part because of the realization that what may act as a constraint in one context may provide critical opportunities in others, and that diversity and novelty may have evolved not in spite of the deep homology of genes, pathways, and processes across phyla, but because of it. Two examples will help to illuminate this perspective.

The first concerns the eyes of vertebrates, insects, mollusks, or jellyfish—morphologically distinct structures that arise in disparate embryological contexts (reviewed in Shubin et al.

70 Armin P. Moczek

have subtle consequences. One of the best examples illustrating the opposite is the developmental evolution of Darwin's finches, via heterometric changes in two genes, bone morphogenetic protein 4 (Bmp4) and calmodulin (cal), which both encode proteins that through different routes promote cell division and thus tissue growth (Abzhanov et al. 2004, 2006). Experimental and modeling work shows that evolved changes in the expression levels of both genes are sufficient to explain the diversity of beak shapes among Darwin's finches, and that experimental induction of a subset of these changes in chick embryos results in matching changes in beak formation (Wu et al. 2004, 2006).

(iv) Heterocyberny, lastly, is a term few seem to use, but it nevertheless illustrates an important concept: an evolutionary change in governance, that is a change in the upstream regulation of a conserved downstream process (Gilbert and Epel 2009). Used most broadly, it refers to the process whereby initially environmentally induced traits may over generations become genetically stabilized and incorporated into lineage's norm of reaction. We will return to this broad notion of heterocyberny toward the end of this chapter; for now I want to emphasize that evolutionary changes in upstream regulation can of course also occur on many other levels. As before, no new modules or building blocks need to be introduced, instead both up and down-stream components already exist; all that changes is the nature of interaction between them. Evolutionary developmental geneticists now broadly recognize, for example, the ease with which transcription factors acquire novel targets, even in traits that themselves constitute relatively recent evolutionary inventions: for example, the somatic sex-determination gene doublesex (dsx) regulates the relative size and sex-specific expression of evolutionary novel beetle horns, just like it regulates the same features of much more ancient traits, such as genitalia. Yet in horns it acts on a largely non-overlapping repertoire of target genes (compared to genitalia or brains), suggesting that both heterotopic recruitment of novel regulators (such as dsx) and novel target genes into their governance can occur with surprising ease (Ledon-Rettig, Zattara, and Moczek 2017).

In summary, heterotopy, heterochrony, heterometry, and heterocyberny all illustrate that much diversification and innovation may be possible without the need to generate new genes, pathways, or cell fates. Instead, phenotypic diversity emerges through heritable changes channeled along four simple developmental axes—developmental time, developmental location, quantity of developmental product, and nature of regulatory interactions. Lastly, combinations of these four processes operating sequentially or at the same time have the power to further potentiate the developmental degrees of freedom available for rapid evolutionary diversification and innovation.

One may ask then which mechanisms in turn enable developmental processes to be so modular in developmental time, space, upstream regulation and downstream output? The reasons for this derive to a significant degree from the fact that the mechanisms in question are themselves highly modular, and on a variety of levels (reviewed in Carroll, Grenier, and Weatherbee 2004; Gerhart and Kirschner 2010; Gilbert 2013): for example, cellular transduction pathways convert signals external to a cell, such as information on nutrient

The Shape of Things to Come

71

availability or position, into signals that enter the nucleus and affect gene expression. Cellular transduction of information primarily takes the form of on/off switches, which are in operation all the time during the life of a cell, in all cells and tissues, developmental stages, and in response to a remarkable diversity of external cues, soliciting a corresponding diversity of intracellular responses. Collectively, this diversity of regulatory decisions reliant upon signal transduction pathways is mindboggling, especially when juxtaposed to the comparatively minute number of transduction pathways that facilitate it. All of those share that they are ancient, predating the traits or processes they regulate in extant organisms by at times billions of years. They also share remarkable degrees of conservation across phyla, and an exquisitely fine-tuned, robust, and reliable nature of interactions among their respective component parts. And lastly, they all share that their modular and combinatorial re-use across diverse contexts facilitates precise developmental decisionmaking, yet without having to evolve a comparable diversity of switch mechanisms (Gerhart and Kirschner 2010). Transcription factors by themselves, too, contribute modularity, most strikingly through their highly combinatorial action in regulating gene expression. Precise combinations of transcription factors are needed to drive gene expression in

sion. Precise combinations of transcription factors are needed to drive gene expression in specific contexts, and subtle changes in the timing or location of a single transcription factor may suffice to generate heterochronic or -topic developmental changes, without resulting in negative developmental consequences in other aspects of phenotype formation elsewhere, and without the need to evolve new factors for new developmental decisions (Carroll et al. 2004). Lastly, cis-regulatory elements, or CREs, are those genomic regions transcription factors bind to regulate gene expression. CREs are themselves highly modular, with different CREs enabling different facets of a given gene's expression, such as expression in specific locations, developmental stages, cell types, and so on. The highly modular nature of CREs then allows each facet to be regulated—and to evolve—semi-independently, again minimizing pleiotropic constraints (Prud'homme, Gompel, and Carroll 2007). As before, by relying on a preexisting and clearly finite arsenal of building blocks, in this case signal transduction pathways, other transcriptional regulators, and the respective DNA binding sites they interact with, developmental systems are able to generate diverse and novel regulatory settings without having to generate novel regulatory machineries.

On different levels of biological organization we thus see how the nature of developmental processes establishes the degrees of freedom along which development evolution may proceed more easily than others, putting us in a position to understand not just the developmental basis of evolutionary changes but also the creative potential development possesses to facilitate diversity, and doing so not despite the conservation of its building blocks, but because of it. In our quest to understand why evolution unfolds the way it does and not some other way, a comparative developmental perspective thus makes a unique contribution, one no other framework can provide. I would like to close this section by highlighting two concrete case studies to fully illustrate the power and promise of this approach.

patterns that were able to evolve in different lineages but also the many examples of parallel pattern evolution, the ease with which some patterns can be lost and (re)gained, and so on. More generally it paints a picture of developmental evolution that converts a constraint into scaffolding for novel diversity, a notion we have by now encountered on several levels in this chapter. At the same time, it assumes a specific polarity: transcription factors create a regulatory landscape, and subsequent innovation and diversification are then shaped by this landscape. Or: branches specify locations for new ornaments, rather than the other way around. Work since suggests, however, that innovation itself, once successful, may well create novel regulatory landscapes, or in the language of the Christmas tree model, that the branches of the tree do not just provide opportunities for new ornaments but respond to new ornaments by growing into previously unoccupied space. Our last example seeks to illuminate this perspective.

(b) The Regulatory Landscape Is Not Static: Innovation on the Dorsal Head of Insects

From the stalks of stalk-eyed flies and the weevil rostrum to the cephalic horns of dung beetles, the dorsal head of adult insects has emerged as an evolutionary hotspot for innovation and diversification (Grimaldi and Engel 2005). At the same time, the insect head has been in existence for at least 420 million years, and the developmental genetic network that patterns head formation is even older, manifest in a remarkable degree of conservation across phyla. Recent work on the horned beetle genus Onthophagus has documented that the first position for head horn formation that evolved, and the one now most commonly observed in extant taxa, coincides with the boundary between the clypeolabral and ocular head segments (Busey, Zattara, and Moczek 2016). These segments are first specified during embryonic development, but the mechanisms that specify the boundary between them appear to have been repurposed much later in late larval and pupal development to provide positional information for where horns are to be integrated within the future adult head. Other horn positions also evolved, but did so much more recently and are thus found in far fewer extant species. Up to this point this narrative matches what we have seen thus far-a preexisting regulatory landscape channels novelty—in this case horns used as weapons in male combat down specific evolutionary avenues. But subsequent studies paint a more complex picture.

Studies on embryonic head development in *Tribolium* beetles implicate the interplay between two transcription factors, six3/optix and orthodenticle (otd) in establishing the clypeolabral-ocular segment boundary (Posnien et al. 2010, 2011). Both genes play critical roles in embryonic head formation in all bilaterians studied, yet their roles in postembryonic development (e.g., during larval, pupal, and adult development) are much less well known. One major exception constitutes otd, which in Drosophila plays a critical role in late development through promoting the development of ocelli, three single-lens eyes positioned along the posterior midline of the dorsal adult head (Blanco et al. 2009). Following otd-inactivation, these ocelli no longer form. Most insect orders possess ocelli,

74 Armin P. Moczek

though it is presently not known whether ocellar development is also under the control of otd in these other orders. What is known, however, is that almost all beetles have secondarily lost ocelli. Further, experimental down-regulation of otd, while lethal in *Tribolium* embryos, has no phenotypic consequences during the formation of the adult dorsal head of the same species (Zattara et al. 2016). Even though otd is expressed during adult head formation in *Tribolium*, this expression appears functionless. So far so good.

However, similar experiments in the horned scarab beetle genus Onthophagus yielded completely different outcomes. Here, otd emerged as absolutely critical for the proper patterning of the dorsal head, including the positioning of cephalic horns. Further, while its function in embryonic development is intimately tied to that of six3, that interdependence no longer exists at later developmental stages. It is tempting to speculate that otd may have been freed up to evolve this novel function because of the putative secondary loss of its role in regulating ocelli formation in the same part of the dorsal head, prior to the evolution of the first horns. Alternatively, otd expression in adult beetle heads may simply be an embryonic leftover, which Onthophagus capitalized upon and recruited into the context of horn formation. Regardless of how otd arrived at its novel role in Onthophagus development, the most important finding, however, is that things did not stop there. Instead, otd-specified horn-bearing head regions acquired all sorts of additional functions via the recruitment of a secondary set of pathways: for example, recruitment of the somatic sex-determination pathway enabled horns to be expressed solely in males and exaggerated under high nutrition, facilitating the evolution of both sexual dimorphisms and highly positive allometries in males only (Kijimoto, Moczek, and Andrews 2012). Further recruitment of the hedgehog-signaling pathway enabled the evolution of a complementary function active suppression of horns under low nutrition only-enabling the evolution of alternativehorned and hornless male phenotypes cued by nutritional conditions experiences as larvae (Kijimoto and Moczek 2016). Additional pathways include signaling via the insulin and sero-

(Kijimoto and Moczek 2016). Additional pathways include signaling via the insulin and serotonin pathways, again pathways that as best as we know play no role in dorsal epidermal head development in insects, yet appear to have been recruited into this context once the opportunity to operate on a new module—horn-forming head regions—existed (Casasa et al. 2017). More generally, these observations suggest that the Christmas tree model of morphological evolution may need to be replaced perhaps by a Romanesco broccoli model, where each addition of a new ornament begets the fractal-like addition of a new branch, a new whirl, offering yet more opportunities for subsequent ornamentation.

What Causes Does Evo Devo Contribute?

This chapter was meant to explore the contributions made by evo devo to our understanding for why and how evolution unfolds the way it does. It is easy to get lost in the details and idiosyncrasies of the many case studies of developmental evolution, and thus worth to step back and ask: what causes in evolution does evo devo contribute that may not have been considered prior to the existence of the field? What here is truly new?

For starters, evo devo more than any other discipline offers a mechanistically concrete understanding of how traits come into being, and how the underlying processes have to be modified to yield novel trait variants. It is one thing to associate trait variation with allelic variation in a population or to map quantitative trait loci to disease phenotypes. It is a much deeper explanation to also understand how some genetic variants but not others result, for instance, in altered DNA binding of proteins, the circumstances under which this may facilitate the expression of old gene products in new locations or developmental time points, yield the corresponding induction of cellular differentiation events and respective organ formation, and so on. As such evo devo offers richer, perhaps more satisfying explanations of what mechanistic causes underlie evolutionary changes. But does it also offer qualitatively novel causes previously unconsidered?

I would posit that it does, on at least two levels. First, evo devo offers what has been called a lineage explanation (Calcott 2009) for biological diversity, including novelty. In other words, it offers the opportunity to understand developmental evolution and innovation as a sequence of events, where one event is needed to enable another to take place, leading eventually to a final outcome. Because the traits of most interest to evo devo practitioners are typically complex, lineage explanations that reside solely on the level of DNA sequences are insufficient to understand how developmental evolution transitioned from one state to the next: even though DNA sequence changes are of course an integral component of such an explanation it takes an understanding of how form comes into being—the devo—and how form-making is altered over generation,—the evo—to allow this level of causation in evolution to have explanatory power.

Second, evo devo contributes a novel type of causation that focuses on what we might call the degrees of freedom underlying developmental assembly, rather than simply the number and diversity of developmental component parts (Wagner 2000; Eble 2005). By recognizing that the nature of development is modular in developmental time, space, and regulation, evo devo is the first discipline to emphasize that evolutionary changes in aspects of this modular organization contribute critical degrees of freedom, or axes of variability, that enable and guide developmental evolution. Here the explanatory cause contributed by evo devo lies less with the discovery of the individual module: a module in it of itself contributes the same explanatory value as a gene might. Instead it comes with the discovery of the dimension within which a given modularity exists—space, time, cis-regulation—that contributes novel explanatory power, thereby enriching our understanding of what causes developmental evolution to unfold the way it does (Uller et al. 2018).

76 Armin P. Moczek

What Is Next? Current Conceptual Challenges to Evo Devo

Over the past 30 years, evolutionary developmental biology has provided context after context that establish development and evolution as both cause and effect of each other. Development is one of the many products of phenotypic evolution, which in turn is shaped by the nature of developmental processes. Viewed this way, to build a phenotype requires development, while to evolve a change in phenotypes requires changes in the genetic basis of development. At the same time evo devo is encountering its own challenges, both from within as well as from neighboring disciplines, which it must meet in order to remain relevant. I would like to close this chapter by highlighting the three challenges I consider most significant.

Too many genes, too little development Over the past 50 years, developmental biology has morphed into developmental genetics. Attending developmental biology meetings now one finds precious few talks or posters where the emphasis isn't on characterizing genes whose products and interactions contribute to the formation of some, preferentially experimentally very tractable, trait. Evo devo reflects the same trend and should perhaps be more aptly named evolutionary developmental genetics. Evo devo text books and courses are filled with examples of developmentally significant genes whose evolution has contributed in some way to important developmental changes in how traits are made. But making a difference in a trait is not the same as making a trait, especially not the complex traits evo devo is most concerned with (Keller 2010). Instead, traits are the products of developmental systems to which genes and their products contribute important interactants.

Other products and interactions that are just as critical for trait formation emerge on other levels of biological organization as well, for example, through the communication among cells, or reciprocally inductive events among tissues, or the complex feedbacks commonplace among the component parts of organ system (Moczek 2015). While genes and genetic variation contribute to each of these as well, and therefore contribute to making such interactions reliably heritable, that relationship is not nearly as straightforward as that between a transcription factor and its binding site. Thus, while *evo devo* has managed to point us in productive directions as to how to better conceptualize and investigate the origins of diversity, novelty, and complexity, full realization of this goal will require a reorientation away from an understanding of traits and organisms as residing solely in genes and genomes, and toward an appreciation of traits as products of developmental systems. Viewed this way, *phenotypes emerge from developmental systems*, whose evolution requires heritable changes in system functions.

The contingent nature of development and developmental evolution: What, exactly, is environment? The proper functioning of all developmental processes ultimately depends on context. Context, in turn, is created by past developmental processes generating conditions for the next round of phenotype construction to take place. This constructive nature

of development is so ubiquitous we tend to overlook that it is of profound significance in ensuring the proper progression of development. Only more recently has it come into the focus of developmental biologists and evo devo practitioners that this context-or environment-constructing ability of developmental processes—does not end with where we conventionally assume the organisms itself ends: instead we now recognize that organisms, through their behavior, metabolism, and choices, actively and non-randomly also modify their external environment in ways that in turn feed back to affect their own fitness. Such niche construction blurs our conventional understanding of where organisms end and their environment begins, and opens up additional routes to adaptation and inheritance: organisms may no longer adapt solely by modifying their traits to suit environmental conditions but modify environmental conditions to suit their traits. Similarly, organisms no longer endow their offspring just with a set of genes but pass on to them everything from methylation states to transcripts, antibodies to symbionts, and territories to positions within a social hierarchy (Laland et al. 2015). Put together, the constructive nature of organismal functioning thus transcends many dimensions both internal and external to the organism. Viewed this way, to develop is to interact with (and often construct) internal

organism. Viewed this way, to develop is to interact with (and often construct) internal and external environmental states. Developmental evolution then requires alteration of these interactions in a heritable manner. Integrating the study of the mechanisms and consequences of these interactions into its portfolio of research programs will greatly enhance the explanatory power of evo devo.

Microecoevodevo Evo devo is correct in its assessment that our ability to understand, reconstruct, and predict the evolution of complex traits will be impossible without an explicit developmental, phenotype-constructing perspective. But population genetics is also correct in its assessment that all genetic evolution is subject to the rules and constraints imposed by population biology. And, as emphasized above, future models must better integrate the simultaneously environment-dependent and -constructing nature of development and developmental evolution. How best to achieve this is unclear, but the quantitative frameworks that already exist in population genetics and niche construction theory on one side, and the increased appreciation of developmental symbioses and phenotypic plasticity within evo devo, offer good starting points to continue and deepen the necessary conversations.

Conclusion

The novel ways of thinking advanced by evolutionary developmental biology are providing powerful, new approaches to expand and, in part, correct our thinking on cause and process in evolution, thereby putting us in a position to resolve long-standing questions across diverse biological disciplines, in particular in evolutionary biology. *Evo devo* itself has grown tremendously in the recent past (reviewed in Moczek et al. 2015), and I expect