mTORC1/AMPK responses define a core gene set for developmental cell fate switching
manipulating activities of mTORC1/AMPK in the absence of nutrient withdrawal is sufficient for a growth-to-developmental fate switch in Dictyostelium, providing a means to identify transcriptional networks and signaling pathways essential for early development.
This study indicates that rapamycin-targeted inactivation of mTORC1 with reciprocal activation of AMPK, in the absence of nutrient withdrawal, is sufficient to effect a growth-to-developmental fate switch to induce multi-cell development of Dictyostelium. Using an RNA-sequencing approach, we identified mTORC1/AMPK-regulated transcriptional networks and associated signaling pathways that are essential for early developmental induction but are regulated independently of nutrient withdrawal. We then investigated genes with unclassifiable GO and ortholog terminologies and showed that the rapamycin-induced expression group can be applied for novel gene discovery in pathways essential for early developmental induction.
