In order to extract, integrate, and respond to outside information, neuronal circuits must be appropriately assembled by establishing specific synaptic connections between neurons and their targets to generate a sensory organ-specific primary sensory map1. For many sensory neurons this requires sophisticated navigation as their targets are independently generated and are a long distance from where the sensory neuronal cell body is located when it exits the cell cycle. There is directed extension of central projecting axons through a complex environment consisting of both secreted attractive and repulsive cues as well as cues that are part of the extracellular matrix allowing these growing axons to navigate their way to the correct target and form synapses2,3. This occurs in the peripheral nervous system as well as the central nervous system. The afferent divisions of the trigeminal, facial, and lateral line nerves along with afferents from the inner ear must each make precise wiring decisions to initially project to their respective nuclei, and subsequently synapse with the correct neurons within those nuclei to generate such a primary map4. For the inner ear, many studies have focused on the molecular cascades orchestrating the precise projections of these inner ear afferents to their peripheral hair cell targets5,6,7,8, which are derived from the same precursor population of cells as their respective neurons9,10,11. While the adult organization and the development of inner ear afferent central projections have been described at the morphological level12,13,14,15,16,17,18, relatively few studies have looked at the molecular factors that guide inner ear afferents to their central targets1,19,20.
