2017 DOI: 10.1371/journal.pone.0173500
ATP-driven proton pumps, which are critical to the operation of a cell, maintain cytosolic and organellar pH levels within a narrow functional range. These pumps employ two very different mechanisms: an elaborate rotary mechanism used by V-ATPase H+ pumps, and a simpler alternating access mechanism used by P-ATPase H+ pumps. Why are two different mechanisms used to perform the same function?
When the conditions under which the pump must operate permit a coupling ratio greater than one, the rotary mechanism may have been selected for its kinetic advantage. On the other hand, when conditions require a coupling ratio of one or less, the alternating access mechanism may have been selected for other possible advantages resulting from its structural and functional simplicity.
Why are there two different mechanisms, a rotary mechanism and an alternating access mechanism, for ATP-driven proton pumps?
when driving conditions are such that a coupling ratio above one is sufficient for viable operation, the rotary mechanism may have a selective advantage. However, when a process requires a coupling ratio of one for viable operation, the alternating access mechanism may have a selective advantage because of its simplicity and corresponding lower cost of protein synthesis.
